ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне AC треугольника ABC взята точка D так, что AD : DC = 1 : 2.  Докажите что у треугольников ADB и CDB есть по равной медиане.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 402]      



Задача 64594

Темы:   [ Шестиугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В выпуклом шестиугольнике ABCDEF противоположные стороны попарно параллельны  (AB || DE,  BC || EF,  CD || FA),  а также  AB = DE.
Докажите, что  BC = EF  и  CD = FA.

Прислать комментарий     Решение

Задача 108617

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точки P , Q , R и S – середины сторон соответственно AB , BC , CD и DA выпуклого четырёхугольника ABCD , M – точка внутри этого четырёхугольника, причём APMS – параллелограмм. Докажите, что CRMQ – тоже параллелограмм.
Прислать комментарий     Решение


Задача 108619

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точка D взята на медиане BM треугольника ABC. Через точку D проведена прямая, параллельная стороне AB, а через точку C – прямая, параллельная медиане BM. Две проведённые прямые пересекаются в точке E. Докажите, что  BE = AD.

Прислать комментарий     Решение

Задача 109068

Темы:   [ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 10,11

В пространстве проведены две параллельные прямые и пересекающие эти прямые две параллельные плоскости. Докажите, что четыре точки пересечения прямых и плоскостей служат вершинами параллелограмма.
Прислать комментарий     Решение


Задача 111578

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

На стороне AC треугольника ABC взята точка D так, что AD : DC = 1 : 2.  Докажите что у треугольников ADB и CDB есть по равной медиане.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .