ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC на стороне BC выбрана точка M так, что точка пересечения медиан треугольника ABM лежит на описанной окружности треугольника ACM , а точка пересечения медиан треугольника ACM лежит на описанной окружности треугольника ABM . Докажите, что медианы треугольников ABM и ACM из вершины M равны. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 181]
Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что медиана разбивает треугольник на два равновеликих треугольника.
Медиана треугольника в полтора раза больше стороны, к которой она проведена. Найдите угол между двумя другими медианами.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 181] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|