ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый четырёхугольник ABCD таков, что AB·CD = AD·BC. Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.
На плоскости даны оси координат с одинаковым, но не
обозначенным масштабом и график функции
Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N
соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что ∠ILA = ∠IMB, ∠IKC = ∠INB. Докажите, что |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 352]
Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N
соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что ∠ILA = ∠IMB, ∠IKC = ∠INB. Докажите, что
В выпуклом четырёхугольнике ABCD выполняются равенства: ∠B = ∠C и CD = 2AB. На стороне BC выбрана такая точка X, что ∠BAX = ∠CDA.
Bыпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что XY = YZ и AY = BZ. Докажите, что прямые XZ и BC перпендикулярны.
Биссектрисы треугольника ABC пересекаются в точке I, ∠ABC = 120°. На продолжениях сторон AB и CB за точку B отмечены соответственно точки P и Q так, что AP = CQ = AC. Докажите, что угол PIQ – прямой.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке