ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шмаров В.

Дан выпуклый четырёхугольник ABCD . Пусть P и Q – точки пересечения лучей BA и CD , BC и AD соответственно, а H – проекция D на PQ . Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников ADP и CDQ видны из точки H под равными углами.

   Решение

Задачи

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 769]      



Задача 109847

Темы:   [ Свойства симметрий и осей симметрии ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
Сложность: 6-
Классы: 8,9,10,11

Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .
Прислать комментарий     Решение


Задача 111867

Темы:   [ Гомотетия помогает решить задачу ]
[ Окружность Ферма-Аполлония ]
[ Гомотетичные окружности ]
[ Окружность, вписанная в угол ]
[ Описанные четырехугольники ]
[ Композиции гомотетий ]
Сложность: 6+
Классы: 9,10,11

Автор: Шмаров В.

Дан выпуклый четырёхугольник ABCD . Пусть P и Q – точки пересечения лучей BA и CD , BC и AD соответственно, а H – проекция D на PQ . Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников ADP и CDQ видны из точки H под равными углами.
Прислать комментарий     Решение


Задача 54337

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Окружность с центром в точке пересечения диагоналей AC и BC равнобедренной трапеции ABCD касается меньшего основания BC и боковой стороны AB. Найдите площадь трапеции ABCD, если известно, что её высота равна 16, а радиус окружности равен 3.

Прислать комментарий     Решение

Задача 65003

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC  (∠C = 90°)  биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что  OIAB.

Прислать комментарий     Решение

Задача 66314

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Три прямые, пересекающиеся в одной точке ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 3+
Классы: 9,10

Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.

Прислать комментарий     Решение

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .