ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа?

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1027]      



Задача 66522

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Миша сложил из кубиков куб 3×3×3. Затем некоторые соседние по грани кубики он склеил друг с другом. Получилась цельная конструкция из 16 кубиков, остальные кубики Миша убрал. Обмакнув конструкцию в чернила, он поочерёдно приложил её к бумаге тремя гранями. Вышло слово КОТ (см. рис.). Что получится, если отпечатать грань, противоположную букве "О"?

Прислать комментарий     Решение


Задача 66671

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четырехугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Автор: Шноль Д.Э.

В четырехугольниках $ABCD$ и $A_1B_1C_1D_1$ равны соответствующие углы. Кроме того, $AB=A_1B_1$, $AC=A_1C_1$, $BD=B_1D_1$. Обязательно ли четырехугольники $ABCD$ и $A_1B_1C_1D_1$ равны?
Прислать комментарий     Решение


Задача 115363

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметические действия. Числовые тождества ]
Сложность: 4-
Классы: 8,9,10

Существуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа?
Прислать комментарий     Решение


Задача 35770

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Периодические и непериодические дроби ]
Сложность: 4-
Классы: 10,11

Укажите такое шестизначное число N, состоящее из различных цифр, что числа 2N, 3N, 4N, 5N, 6N отличаются от него перестановкой цифр.

Прислать комментарий     Решение

Задача 55179

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

Существует ли треугольник, все высоты которого меньше 1, а площадь больше или равна 10?

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .