Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 80]
|
|
Сложность: 3+ Классы: 8,9,10
|
Один из двух приведённых квадратных трёхчленов имеет два корня, меньших 1000, другой – два корня, больших 1000. Может ли сумма этих трёхчленов иметь один корень меньший 1000, а другой – больший 1000?
|
|
Сложность: 3+ Классы: 8,9,10
|
Угол, образованный лучами y = x и y = 2x при x ≥ 0, высекает на параболе y = x² + px + q две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой.
Найдите все такие пары квадратных трёхчленов x² + ax + b, x² + cx + d, что a и b – корни второго трёхчлена, c и d – корни первого.
|
|
Сложность: 3+ Классы: 8,9,10
|
Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.
Могут ли значения этих трёхчленов в некоторой положительной целой точке равняться 19 и 98?
|
|
Сложность: 3+ Классы: 9,10,11
|
Задайте формулой какую-нибудь квадратичную функцию, график которой пересекает оси координат в вершинах прямоугольного треугольника.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 80]