ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции втрое больше другого.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 129]      



Задача 55236

Темы:   [ Неравенство Коши ]
[ Площадь трапеции ]
[ Неравенства с площадями ]
[ Четырехугольники (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9

При каком значении высоты прямоугольная трапеция с острым углом 30° и периметром 6 имеет наибольшую площадь?

Прислать комментарий     Решение

Задача 102356

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

Трапеция KLMN ( LM$ \Vert$KN) вписана в окружность, а другая окружность вписана в эту трапецию, LM : KN = 1 : 3, площадь трапеции равна $ {\frac{2\sqrt{3}}{3}}$. Найдите высоту трапеции.
Прислать комментарий     Решение


Задача 115588

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции втрое больше другого.

Прислать комментарий     Решение

Задача 115589

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции втрое больше другого.

Прислать комментарий     Решение

Задача 52678

Темы:   [ Описанные четырехугольники ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

Средняя линия равнобедренной трапеции равна 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит ее на две части, отношение площадей которых равно $ {\frac{7}{13}}$. Найдите высоту трапеции.

Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .