ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямые, касающиеся окружности Ω в точках A и B, пересекаются в точке O. Точка I – центр Ω. На меньшей дуге AB окружности Ω выбрана точка C, отличная от середины дуги. Прямые AC и OB пересекаются в точке D, а прямые BC и OA – в точке E. Докажите, что центры описанных окружностей треугольников ACE, BCD и OCI лежат на одной прямой. Решение |
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 829]
Прямые, касающиеся окружности Ω в точках A и B, пересекаются в точке O. Точка I – центр Ω. На меньшей дуге AB окружности Ω выбрана точка C, отличная от середины дуги. Прямые AC и OB пересекаются в точке D, а прямые BC и OA – в точке E. Докажите, что центры описанных окружностей треугольников ACE, BCD и OCI лежат на одной прямой.
На стороне AB треугольника ABC взяты такие точки X, Y, что AX = BY. Прямые CX и CY вторично пересекают описанную окружность треугольника в точках U и V. Докажите, что все прямые UV проходят через одну точку.
Докажите, что если перпендикуляры, опущенные из точек A1, B1 и C1 на прямые BC, AC и AB соответственно, пересекаются в одной точке, то и перпендикуляры, опущенные из точек A, B и C на прямые соответственно B1C1, A1C1 и A1B1, также пересекаются в одной точке.
Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.
Hа сторонах треугольника ABC во внешнюю сторону построены правильные треугольники ABC1, BCA1, CAB1. Hа отрезке A1B1 во внешнюю сторону треугольника A1B1C1 построен правильный треугольник A1B1C2. Докажите, что C – середина отрезка C1C2.
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|