|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100. Точки A , B , C и D последовательно расположены на окружности. Известно, что градусные меры меньших дуг AB , BC , CD и AD относятся как 1:3:5:6. Найдите углы четырёхугольника ABCD . |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 209]
Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него.
Треугольник ABC — равнобедренный. Радиус OA описанного круга образует с основанием AC угол OAC, равный 20o. Найдите угол BAC.
Диаметр AB и хорда CD пересекаются в точке M,
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 209] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|