ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Если две параллельные плоскости пересечь третьей, то прямые пересечения будут параллельны. Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля. Отрезок постоянной длины движется по плоскости
так, что его концы скользят по сторонам прямого угла ABC. По какой
траектории движется середина этого отрезка?
Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 241]
Решите с помощью псевдоскалярного произведения задачу 4.29, б.
Пусть O – центр окружности, описанной около равнобедренного
треугольника ABC ( AB=AC ), D – середина стороны AB , а
E – точка пересечения медиан треугольника ACD . Докажите,
что OE
Внутри треугольника ABC выбрана произвольная точка X . Лучи AX , BX и CX пересекают описанную около треугольника ABC окружность в точках A1 , B1 и C1 соответственно. Точка A2 симметрична точке A1 относительно середины стороны BC . Аналогично определяются точки B2 и C2 . Докажите, что найдётся такая фиксированная точка Y , не зависящая от выбора X , что точки Y , A2 , B2 и C2 лежат на одной окружности.
Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей.
Даны 4 точки на плоскости $A$, $B$, $C$, $D$, не образующие прямоугольник. Пусть стороны треугольника $T$ равны $AB+CD$, $AC+BD$, $AD+BC$. Докажите, что $T$ – остроугольный.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 241]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке