ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 330]      



Задача 115732

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Пересекающиеся окружности ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 3+
Классы: 8,9,10,11

Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.

Прислать комментарий     Решение

Задача 115891

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10,11

Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.

Прислать комментарий     Решение

Задача 116393

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

В треугольнике ABC точки A1, B1, C1 – основания высот из вершин A, B, C, точки CА и CВ – проекции C1 на AC и BC соответственно.
Докажите, что прямая CАCВ делит пополам отрезки C1A1 и C1B1.

Прислать комментарий     Решение

Задача 55368

Темы:   [ Параллелограмм Вариньона ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Точки M, K, N и L - середины сторон AB, BC, CD и DE пятиугольника ABCDE(не обязательно выпуклого), P и Q - середины отрезков MN и KL. Докажите, что отрезок PQ в четыре раза меньше стороны AE и параллелен ей.

Прислать комментарий     Решение


Задача 116258

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .