ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На боковых рёбрах PA , PB , PC (или на их продолжениях) треугольной пирамиды PABC взяты точки M , N , K соответственно. Докажите, что отношение объёмов пирамид PMNK и PABC равно

· · .

Вниз   Решение


На плоскости нарисованы n > 2 различных векторов  a1, a2, ..., an  с равными длинами. Оказалось, что все векторы  –a1 + a2 + ... + an,
a1a2 + a3 + ... + ana1 + a2 + ... + an–1an   также имеют равные длины. Докажите, что  a1 + a2 + ... + an = 0.

ВверхВниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

ВверхВниз   Решение


Точка M принадлежит ребру CD параллелепипеда ABCDA1B1C1D1 , причём CM:MD = 1:2 . Постройте сечение параллелепипеда плоскостью, проходящей через точку M параллельно прямым DB и AC1 . В каком отношении эта плоскость делит диагональ A1C параллелепипеда?

ВверхВниз   Решение


Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) S1 в точках B1 и C1, а окружности (или прямой) S2 в точках B2 и C2 (причем касание в B2 и C2 такое же, как в B1 и C1). Докажите, что окружности, описанные вокруг треугольников AB1C1 и AB2C2, касаются друг друга.

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга (в этом классе), 11 – по 4 друга, а 10 – по 5 друзей?

ВверхВниз   Решение


Автор: Фольклор

Решите уравнение:   .

ВверхВниз   Решение


В треугольнике ABC высота BD образует со стороной BC угол в 45°. Считается, что прямая BD, содержащая высоту, уже построена. Как одним движением циркуля построить ортоцентр треугольника ABC?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 57003

Темы:   [ Частные случаи треугольников (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если  ∠A = 45°,  то B1C1 – диаметр окружности девяти точек треугольника ABC.

Прислать комментарий     Решение

Задача 115951

Темы:   [ Необычные построения (прочее) ]
[ Частные случаи треугольников (прочее) ]
Сложность: 2
Классы: 8,9

В треугольнике ABC высота BD образует со стороной BC угол в 45°. Считается, что прямая BD, содержащая высоту, уже построена. Как одним движением циркуля построить ортоцентр треугольника ABC?

Прислать комментарий     Решение

Задача 116266

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Частные случаи треугольников (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Автор: Шевяков В.

Дан выпуклый четырёхугольник. Если провести в нём любую диагональ, он разделится на два равнобедренных треугольника. А если провести в нём обе диагонали сразу, он разделится на четыре равнобедренных треугольника. Обязательно ли этот четырёхугольник – квадрат?

Прислать комментарий     Решение

Задача 116201

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Частные случаи треугольников (прочее) ]
Сложность: 4+
Классы: 8,9

B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.

Прислать комментарий     Решение

Задача 108077

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Частные случаи треугольников (прочее) ]
Сложность: 4
Классы: 8,9

Точка P лежит внутри равнобедренного треугольника ABC  (AB = BC ),  причём  ∠ABC = 80°,  ∠PAC = 40°,  ∠ACP = 30°.  Найдите угол BPC.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .