Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 181]
B правильном шестиугольнике ABCDEF на прямой AF взята точка X так, что ∠XCD = 45°. Hайдите угол FXE.
|
|
Сложность: 3- Классы: 7,8,9
|
а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
б) Тот же вопрос для 12-угольника.
Окружность разделена на равные дуги n диаметрами. Докажите, что основания перпендикуляров, опущенных из произвольной точки M, лежащей внутри окружности, на эти диаметры, являются вершинами правильного многоугольника.
|
|
Сложность: 3 Классы: 9,10,11
|
В выпуклом пятиугольнике равны все стороны, а также равны четыре из пяти диагоналей.
Следует ли из этого условия, что пятиугольник – правильный?
|
|
Сложность: 3 Классы: 8,9,10,11
|
A – вершина правильного звёздчатого пятиугольника. Ломаная
AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE
продолжены до пересечения в точке F. Докажите, что многоугольник
ABB'CC'DED' равновелик четырёхугольнику AD'EF.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 181]