Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 181]
Докажите, что площадь правильного восьмиугольника равна произведению длин наибольшей и наименьшей диагоналей.
Четыре вершины правильного двенадцатиугольника расположены в серединах сторон квадрата (см. рис.).
Докажите, что площадь заштрихованной части в 12 раз меньше площади двенадцатиугольника.
Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.
|
|
Сложность: 3 Классы: 10,11
|
Каково максимальное число попарно непараллельных отрезков с концами в вершинах правильного n-угольника?
На диагоналях AC и CE правильного шестиугольника ABCDEF взяты точки M и N соответственно, причём AM/AC = CN/CE = λ. Известно, что точки B, M и N лежат на одной прямой. Найдите λ.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 181]