ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LM ≥ AC. ![]() |
Страница: << 1 2 3 4 5 [Всего задач: 23]
В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LM ≥ AC.
Дан параллелограмм ABCD, в котором AB = a, AD = b. Первая окружность имеет центр в вершине A и проходит через D, вторая имеет центр в C и проходит через D. Произвольная окружность с центром B пересекает первую окружность в точках M1, N1, а вторую – в точках M2, N2. Чему равно отношение M1N1 : M2N2?
Дан параллелограмм ABCD (AB < BC). Докажите, что описанные окружности треугольников APQ для всевозможных точек P и Q, выбранных на сторонах BC и CD соответственно так, что CP = CQ, имеют общую точку, отличную от A.
Страница: << 1 2 3 4 5 [Всего задач: 23] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |