ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 67187

Темы:   [ Разрезания (прочее) ]
[ Параллелограммы (прочее) ]
[ Векторы помогают решить задачу ]
[ Вспомогательная раскраска (прочее) ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 8,9,10

Автор: Юран А.Ю.

Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.
Прислать комментарий     Решение


Задача 56501

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Параллелограммы (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL правильный.

Прислать комментарий     Решение

Задача 116085

Темы:   [ Перегруппировка площадей ]
[ Трапеции (прочее) ]
[ Параллелограммы (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 10,11

Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

Прислать комментарий     Решение

Задача 98003

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Осевая и скользящая симметрии (прочее) ]
[ Параллелограммы (прочее) ]
Сложность: 4-
Классы: 8,9

Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
    1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
    2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
  а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
  б) Докажите, что если ABCD – параллелограмм, то можно сделать подходящий к нему картонный четырёхугольник.

Прислать комментарий     Решение

Задача 116075

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 9,10,11

Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .