ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через противоположные рёбра AB и CD тетраэдра ABCD проведены две параллельные плоскости. Аналогично, две параллельные плоскости проведены через рёбра BC и AD , а также – через рёбра AC и BD . Эти шесть плоскостей задают параллелепипед. Докажите, что если тетраэдр ABCD – ортоцентрический (его высоты пересекаются в одной точке), то все рёбра параллелепипеда равны; а если тетраэдр ABCD – равногранный (все его грани – равные между собой треугольники), то параллелепипед – прямоугольный. Вокруг правильного семиугольника описали окружность и вписали в него окружность. То же проделали с правильным 17-угольником. В результате каждый из многоугольников оказался расположенным в своем круговом кольце. Оказалось, что площади этих колец одинаковы. Докажите, что стороны многоугольников одинаковы.
Четырёхугольник ABCD вписан в окружность. Известно, что
AC
Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша? На сторонах острого угла ABC взяты точки A и C. Одна окружность касается прямой AB в точке B и проходит через точку C. Вторая окружность касается прямой BC в точке B и проходит через точку A. Точка D – вторая общая точка окружностей. Известно, что AB = a, CD = b, BC = c. Найти AD. Докажите, что координаты точки пересечения медиан треугольника есть средние арифметические соответствующих координат вершин треугольника. Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м? |
Страница: << 18 19 20 21 22 23 24 [Всего задач: 117]
Рассматриваются всевозможные квадратные трёхчлены вида x² + px + q, где p, q – целые, 1 ≤ p ≤ 1997, 1 ≤ q ≤ 1997.
Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?
Страница: << 18 19 20 21 22 23 24 [Всего задач: 117]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке