ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
  а) по 5 шахматистов;
  б) произвольное равное число шахматистов.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 [Всего задач: 192]      



Задача 116252

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Арифметическая прогрессия ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9

Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
  а) по 5 шахматистов;
  б) произвольное равное число шахматистов.

Прислать комментарий     Решение

Задача 109510

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательная раскраска (прочее) ]
[ Геометрическая прогрессия ]
[ Процессы и операции ]
Сложность: 6
Классы: 9,10,11

Докажите, что существует такое натуральное число n , что если правильный треугольник со стороной n разбить прямыми, параллельными его сторонам, на n2 правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать 1993n точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 [Всего задач: 192]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .