ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников? Правильный многоугольник A1...An вписан в окружность радиуса R с центром O, X — произвольная точка. Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Точка O расположена в сечении BDD'B' прямоугольного параллелепипеда
ABCDA'B'C'D' размером 4× 6× 9
так, что |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 302]
Точка O расположена в сечении BDD'B' прямоугольного параллелепипеда
ABCDA'B'C'D' размером 4× 6× 9
так, что
Есть лист жести размером 6×6. Разрешается надрезать его, но так, чтобы он не распадался на части, и сгибать.
В куб с ребром 1 поместили 8 непересекающихся шаров (возможно, разного размера). Может ли сумма диаметров этих шаров быть больше 4?
В пространстве даны несколько точек и несколько плоскостей. Известно, что через любые две точки проходят ровно две плоскости, а каждая плоскость содержит не меньше четырех точек. Верно ли, что все точки лежат на одной прямой?
Куб размером 10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером 1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 302]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке