ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Стороны треугольника равны 16, 10, 10. Найдите радиусы вписанной и вневписанных окружностей. Решение |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 211]
В остроугольный треугольник вписана окружность радиуса R. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен Q. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.
Стороны треугольника равны 17, 17, 30. Найдите радиусы вписанной и вневписанных окружностей.
Стороны треугольника равны 16, 10, 10. Найдите радиусы вписанной и вневписанных окружностей.
Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.
Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ, rx = rz = r, а ry > r. Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|