Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 1.

Вниз   Решение


В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?

ВверхВниз   Решение


Точки E и F являются серединами отрезков AB и CD соответственно, а прямая EF перпендикулярна прямым AB и CD . Найдите угол между скрещивающимися прямыми AB и CD , если известно, что угол ACB равен arccos , AB = 4 , CD = 6 и EF = .

ВверхВниз   Решение


Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что точка C лежит на отрезке AD. Найдите AC, BC и радиус окружности, если  

ВверхВниз   Решение


В треугольнике ABC точка O является центром описанной окружности. Через вершину B проведена прямая, перпендикулярная AO, пересекающая прямую AC в точке K, а через вершину C проведена прямая, также перпендикулярная AO, пересекающая сторону AB в точке M. Найдите BC, если  BK = a,  CM = b.

ВверхВниз   Решение


Каждая из окружностей S1 , S2 и S3 касается внешним образом окружности S (в точках A1 , B1 и C1 соответственно) и двух сторон треугольника ABC (см.рис.). Докажите, что прямые AA1 , BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 2.

ВверхВниз   Решение


На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 241]      



Задача 57681

Темы:   [ Векторы сторон многоугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Прислать комментарий     Решение


Задача 67035

Темы:   [ Многоугольники (прочее) ]
[ Вычисление площадей ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10,11

В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?
Прислать комментарий     Решение


Задача 86977

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . Найдите расстояние между прямыми BD1 и DC1 и постройте их общий перпендикуляр.
Прислать комментарий     Решение


Задача 97902

Темы:   [ Тетраэдр (прочее) ]
[ Векторы (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?

Прислать комментарий     Решение

Задача 116382

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .