ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая пересекает график функции  y = x²  в точках с абсциссами x1 и x2, а ось абсцисс – в точке с абсциссой x3. Докажите, что    .

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 965]      



Задача 116488

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Аналитический метод в геометрии ]
Сложность: 3-
Классы: 9,10,11

Прямая пересекает график функции  y = x²  в точках с абсциссами x1 и x2, а ось абсцисс – в точке с абсциссой x3. Докажите, что    .

Прислать комментарий     Решение

Задача 116690

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 10

Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число.

Прислать комментарий     Решение

Задача 34837

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3
Классы: 8,9,10

Про действительные числа a, b, c известно, что  (a + b + c)c < 0.  Докажите, что  b² – 4ac > 0.

Прислать комментарий     Решение

Задача 35495

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Известно, что  a5a3 + a = 2.  Докажите, что  a6 > 3.

Прислать комментарий     Решение

Задача 35597

Темы:   [ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Найдите сумму коэффициентов при чётных степенях в многочлене, который получается из выражения  f(x) = (x³ – x + 1)100  в результате раскрытия скобок и приведения подобных слагаемых.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .