ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 499]      



Задача 111597

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Треугольник ABC вписан в окружность с центром O, X – произвольная точка внутри треугольника ABC, для которой  ∠XAB = ∠XBC = φ,  а P – такая точка, что  PXOX,  ∠XOP = φ,  причём углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.

Прислать комментарий     Решение

Задача 115351

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с диаметром AC. Точки K и M – проекции вершин A и C соответственно на прямую BD. Через точку K проведена прямая, параллельная BC и пересекающая AC в точке P. Докажите, что угол KPM – прямой.

Прислать комментарий     Решение

Задача 115883

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10,11

Две окружности пересекаются в точках P и Q. Из точки Q пустили в каждую из окружностей по одному лучу, которые отражаются от окружностей по закону "угол падения равен углу отражения". Точки касания траектории первого луча – A1, A2, ..., второго – B1, B2, ... . Оказалось, что точки A1, B1 и P лежат на одной прямой. Докажите, что тогда все прямые AiBi проходят через точку P.
Прислать комментарий     Решение


Задача 115895

Темы:   [ Построение треугольников по различным элементам ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10,11

Вокруг треугольника ABC описали окружность Ω. Пусть L и W – точки пересечения биссектрисы угла A со стороной BC и окружностью Ω соответственно. Точка O – центр описанной окружности треугольника ACL. Восстановите треугольник ABC, если даны окружность Ω и точки W и O.

Прислать комментарий     Решение

Задача 116504

Темы:   [ Признаки подобия ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10

Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .