ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 501]      



Задача 116900

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Автор: Туманян А.

Окружность Ω описана около треугольника ABC. На продолжении стороны AB за точку B взяли такую точку B1, что  AB1 = AC.  Биссектриса угла A пересекает Ω вторично в точке W. Докажите, что ортоцентр треугольника AWB1 лежит на Ω.

Прислать комментарий     Решение

Задача 53143

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и B, причём центр O окружности S2 лежит на окружности S1. Хорда OC окружности S1 пересекает окружность S2 в точке D. Докажите, что D — точка пересечения биссектрис треугольника ABC.

Прислать комментарий     Решение


Задача 53221

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Два равных равнобедренных треугольника ABC и DBE ( AB = BC = DB = BE) имеют общую вершину B и лежат в одной плоскости, причём точки A и C находятся по разные стороны от прямой BD, а отрезки AC и DE пересекаются в точке K. Известно, что $ \angle$ABC = $ \angle$DBE = $ \alpha$ < $ {\frac{\pi}{2}}$, $ \angle$AKD = $ \beta$ < $ \alpha$. В каком отношении прямая BK делит угол ABC?

Прислать комментарий     Решение


Задача 66687

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9,10,11

В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
Прислать комментарий     Решение


Задача 53080

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В окружность вписана трапеция ABCD. Диаметр, проведённый через вершину A, перпендикулярен боковой стороне CD. Через вершину C проведён перпендикуляр к основанию AD, пересекающий отрезок AD в точке M, а окружность в точке N, причём CM : MN = 5 : 2. Найдите угол при основании трапеции.

Прислать комментарий     Решение


Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .