Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т.д. Какой палец будет по счёту 1992-м?

Вниз   Решение


Найдите все действительные значения a и b, при которых уравнения  x³ + ax² + 18 = 0,   x³ + bx + 12 = 0  имеют два общих корня, и определите эти корни.

ВверхВниз   Решение


В волейбольном турнире каждые две команды сыграли по одному матчу.
  а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
  б) Постройте пример такого турнира семи команд.
  в) Докажите, что если для любых трёх команд найдётся такая, которая выиграла у этих трёх, то число команд не меньше 15.

ВверхВниз   Решение


Автор: Фольклор

На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?

ВверхВниз   Решение


Решите уравнение     Сколько действительных корней оно имеет?

ВверхВниз   Решение


Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то  n ≤ 4.

ВверхВниз   Решение


Автор: Фольклор

На карте обозначены четыре деревни: A, B, C и D, соединённые тропинками (см. рисунок).

В справочнике указано, что на маршрутах A-B-C и B-C-D есть по 10 колдобин, на маршруте A-B-D колдобин 22, а на маршруте A-D-B колдобин 45. Туристы хотят добраться из A в D так, чтобы на их пути было как можно меньше колдобин. По какому маршруту им надо двигаться?

ВверхВниз   Решение


Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят соответственно стороны AB и DC в отношении $ \alpha$, точки K3 и K4 делят соответственно стороны BC и AD в отношении $ \beta$. Доказать, что отрезки K1K2 и K3K4 пересекаются.

ВверхВниз   Решение


На рёбрах AB , BC , CD , DA , BD и AC пирамиды ABCD взяты точки K , L , M , P , N и Q соответственно. Постройте прямую, по которой пересекаются плоскости KLM и PNQ .

ВверхВниз   Решение


В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что угол MOK равен половине угла BLD.

ВверхВниз   Решение


Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

ВверхВниз   Решение


Пусть A, B и C – остатки от деления многочлена P(x) на  x – a,  x – b  и  x – c.
Найдите остаток от деления того же многочлена на произведение  (x – a)(x – b)(x – c).

ВверхВниз   Решение


(Из книги Д. Гриса) Дан массив целых чисел x[1]..x[m+n], рассматриваемый как соединение двух его отрезков: начала x[1]..x[m] длины m и конца x[m+1]..x[m+n] длины n. Не используя дополнительных массивов, переставить начало и конец. (Число действий порядка m + n.)

ВверхВниз   Решение


Даны два массива x[1]...≤x[k] и  y[1]...≤y[l]. Найти их " пересечение", то есть массив z[1]...≤z[m] , содержащий их общие элементы, причём кратность каждого элемента в массиве z равняется минимуму из его кратностей в массивах x и y. Число действий порядка k + l.

ВверхВниз   Решение


В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 126]      



Задача 116555

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 9,10

Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Прислать комментарий     Решение

Задача 116664

Темы:   [ Текстовые задачи (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

На карте обозначены четыре деревни: A, B, C и D, соединённые тропинками (см. рисунок).

В справочнике указано, что на маршрутах A-B-C и B-C-D есть по 10 колдобин, на маршруте A-B-D колдобин 22, а на маршруте A-D-B колдобин 45. Туристы хотят добраться из A в D так, чтобы на их пути было как можно меньше колдобин. По какому маршруту им надо двигаться?

Прислать комментарий     Решение

Задача 116685

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.

Прислать комментарий     Решение

Задача 64307

Темы:   [ Задачи на проценты и отношения ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7

Буратино закопал на Поле Чудес два слитка – золотой и серебряный. В те дни, когда погода хорошая, золотой слиток увеличивается на 30%, а серебряный – на 20%. А в те дни, когда погода плохая, золотой слиток уменьшается на 30%, а серебряный – на 20%. Через неделю оказалось, что один из слитков увеличился, а другой уменьшился. Сколько дней была хорошая погода?

Прислать комментарий     Решение

Задача 64685

Темы:   [ Теория алгоритмов ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

К кабинке канатной дороги, ведущей на гору, подошли четыре человека, которые весят 50, 60, 70 и 90 кг. Смотрителя нет, а в автоматическом режиме кабинка ездит туда-сюда только с грузом от 100 до 250 кг (в частности, пустой она не ездит), при условии, что пассажиров можно рассадить на две скамьи так, чтобы веса на скамьях отличались не более, чем на 25 кг. Каким образом все они смогут подняться на гору?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .