ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне ВС равностороннего треугольника АВС отмечены точки K и L так, что BK = KL = LC, а на стороне АС отмечена точка М так, |
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 563]
Дан равносторонний треугольник ABC. Сторона BC разделена на три равные части точками K и L, а точка M делит сторону AC в отношении 1 : 2, считая от вершины A. Докажите, что сумма углов AKM и ALM равна 30°.
Пусть ABC – остроугольный треугольник, CC1 – его биссектриса, O – центр описанной окружности. Точка пересечения прямой OC1 с перпендикуляром, опущенным из вершины C на сторону AB, лежит на описанной окружности Ω треугольника AOB. Найдите угол C.
В неравнобедренном остроугольном треугольнике ABC точки C0 и B0 – середины сторон AB и AC соответственно, O – центр описанной окружности, H – точка пересечения высот. Прямые BH и OC0 пересекаются в точке P, а прямые CH и OB0 – в точке Q. Оказалось, что четырёхугольник OPHQ – ромб. Докажите, что точки A, P и Q лежат на одной прямой.
На стороне ВС равностороннего треугольника АВС отмечены точки K и L так, что BK = KL = LC, а на стороне АС отмечена точка М так,
В треугольнике ABC провели биссектрисы BB' и CC', а затем стёрли весь рисунок, кроме точек A, B' и C'.
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|