ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали k точек и построили выпуклый k-угольник с вершинами
в выбранных точках. При каком наибольшем k могло оказаться, что у этого многоугольника нет параллельных сторон?

   Решение

Задачи

Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 1221]      



Задача 116395

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

  Назовём натуральное число хорошим, если все его цифры ненулевые. Хорошее число назовём особым, если в нём хотя бы k разрядов и цифры идут в порядке строгого возрастания (слева направо).
  Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем k можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?

Прислать комментарий     Решение

Задача 116756

Темы:   [ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10

Автор: Храмцов Д.

На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали k точек и построили выпуклый k-угольник с вершинами
в выбранных точках. При каком наибольшем k могло оказаться, что у этого многоугольника нет параллельных сторон?

Прислать комментарий     Решение

Задача 116824

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 10,11

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/17 всех экскурсий.

Прислать комментарий     Решение

Задача 67283

Темы:   [ Текстовые задачи (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 6,7,8

В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников?
Прислать комментарий     Решение


Задача 34883

Темы:   [ Параллельный перенос ]
[ Обратный ход ]
Сложность: 4
Классы: 8,9,10,11

а) 2000 фишек расположены на плоскости в вершинах выпуклого 2000-угольника. За один ход можно разбить их на две группы и фишки первой группы сдвинуть на какой-нибудь вектор, а остальные фишки оставить на месте. Может ли случиться, что после 9 ходов все фишки окажутся на одной прямой? б) А после 10 ходов?
Прислать комментарий     Решение


Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .