ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 1221]      



Задача 34976

Темы:   [ Дискретное распределение ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

Автор: Фомин С.В.

Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.
Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?

Прислать комментарий     Решение

Задача 35024

Темы:   [ Перестановки и подстановки ]
[ Процессы и операции ]
[ Инварианты и полуинварианты ]
Сложность: 4
Классы: 8,9,10

На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?

Прислать комментарий     Решение

Задача 61283

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Тригонометрические замены ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

Докажите, что среди семи различных чисел всегда можно выбрать два числа x и y так, чтобы выполнялось неравенство

0 < $\displaystyle {\frac{x-y}{1+xy}}$ < $\displaystyle {\frac{1}{\sqrt3}}$.


Прислать комментарий     Решение

Задача 61287

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрические замены ]
Сложность: 4
Классы: 10,11

Сколько корней на отрезке  [0, 1]  имеет уравнение   8x(1 – 2x²)(8x4 – 8x² + 1) = 1?

Прислать комментарий     Решение

Задача 61292

Темы:   [ Рациональные функции (прочее) ]
[ Тригонометрические замены ]
Сложность: 4
Классы: 9,10,11

Пусть xy + yz + xz = 1. Докажите равенство:

$\displaystyle {\dfrac{x}{1-x^2}}$ + $\displaystyle {\dfrac{y}{1-y^2}}$ + $\displaystyle {\dfrac{z}{1-z^2}}$ = $\displaystyle {\dfrac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}}$.


Прислать комментарий     Решение

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .