ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 402]      



Задача 115674

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4
Классы: 8,9

В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.

Прислать комментарий     Решение

Задача 115685

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD диагонали AC и BD пересекаются в точке O . Точки K , L , M и N лежат на сторонах AB , BC , CD и AD соответственно, причём точка O лежит на отрезках KM и LN и делит их пополам. Докажите, что ABCD — параллелограмм.
Прислать комментарий     Решение


Задача 116757

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10

Автор: Ивлев Ф.

Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.

Прислать комментарий     Решение

Задача 55745

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9

На сторонах параллелограмма построены квадраты по ту же сторону от его сторон, по которую расположен сам параллелограмм. Докажите, что центры этих квадратов сами образуют квадрат.

Прислать комментарий     Решение


Задача 57379

Темы:   [ Признаки и свойства параллелограмма ]
[ Четырехугольник (неравенства) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенство Коши ]
[ Площадь параллелограмма ]
Сложность: 4+
Классы: 8,9,10

В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .