ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по х очков. |
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1007]
Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.
Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?
В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?
В шахматном турнире было 12 участников (каждый сыграл с каждым по одному разу). По итогам турнира оказалось, что есть 9 участников, каждый из которых набрал не более 4 очков. Известно, что Петя набрал ровно 9 очков. Как он сыграл с каждым из двух остальных шахматистов? (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)
Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по х очков.
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1007] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|