ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 109]      



Задача 116857

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 64873

Темы:   [ Общая касательная к двум окружностям ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

В угол вписаны непересекающиеся окружности ω1 и ω2. Рассмотрим все такие пары параллельных прямых l1 и l2, что l1 касается ω1, l2 касается ω21, ω2 находятся между l1 и l2). Докажите, что средние линии всех трапеций, образованных прямыми l1, l2 и сторонами данного угла, касаются фиксированной окружности.

Прислать комментарий     Решение

Задача 60525

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
[ Центральная симметрия помогает решить задачу ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами  (x, y),  лежащие в полосе  0 ≤ x ≤ b – 1.  Каждой такой точке припишем целое число  N(x, y) = ax + by.
  а) Докажите, что для каждого натурального c существует ровно одна точка  (x, y)  (0 ≤ x ≤ b – 1),  для которой  N(x, y) = c.
  б) Теорема Сильвестра. Докажите, что наибольшее c, для которого уравнение  ax + by = c  не имеет решений в целых неотрицательных числах, имеет вид
c = ab – a – b.

Прислать комментарий     Решение

Задача 115779

Темы:   [ Системы точек и отрезков (прочее) ]
[ Теоремы Чевы и Менелая ]
[ Центральная симметрия помогает решить задачу ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 4
Классы: 8,9,10,11

На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.

Прислать комментарий     Решение

Задача 53477

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
[ Композиция центральных симметрий ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 4+
Классы: 8,9,10

С помощью циркуля и линейки постройте пятиугольник по серединам его сторон.

Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .