ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка А лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), В – наиболее удалённая от неё точка на окружности нижнего основания, С – произвольная точка окружности нижнего основания. Найдите АВ, если АС = 12, BC = 5. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]
Пусть V ─ объём тетраэдра, S₁ и S₂ ─ площади двух граней, a ─ длина их общего ребра, φ ─ величина двугранного угла между
Точка А лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), В – наиболее удалённая от неё точка на окружности нижнего основания, С – произвольная точка окружности нижнего основания. Найдите АВ, если АС = 12, BC = 5.
Дана прямая l в пространстве и точка A, не лежащая на ней. Для каждой прямой l', проходящей через A, построим общий перпендикуляр XY (Y лежит на l') к прямым l и l'. Найдите ГМТ точек Y.
Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке