ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Обозначим через  L(m)  длину периода дроби 1/m. Докажите, что если  (m, 10) = 1,  то  L(m)  является делителем числа φ(m).

Вниз   Решение


Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.

ВверхВниз   Решение


Вычислите функции gk,l(x) при  0 ≤ k + l ≤ 4  и покажите, что все они являются многочленами.
Определение многочленов Гаусса gk,l(x) можно найти в справочнике.

ВверхВниз   Решение


Пусть  (m, n) = 1,  а числа x и y пробегают приведённые системы вычетов по модулям m и n соответственно. Докажите, что число  A = xn + ym  пробегает при этом приведённую систему вычетов по модулю mn. Выведите отсюда мультипликативность функции Эйлера (см. задачу 60760).

ВверхВниз   Решение


Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 4260]      



Задача 103879

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 8×8, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна — ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 36 клеток. Побейте его рекорд! (Жюри умеет закрашивать 42 клетки!)

Прислать комментарий     Решение


Задача 21972

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Прислать комментарий     Решение

Задача 21977

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Прислать комментарий     Решение

Задача 21986

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Прислать комментарий     Решение

Задача 21990

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 6,7,8

В клетках таблицы 3×3 расставлены числа –1, 0, 1.
Докажите, что какие-то две из восьми сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 4260]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .