ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось  АБ×ВГ = ДДЕЕ.  Докажите, что он где-то ошибся.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 5977]      



Задача 30360

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 6,7,8

Докажите, что произведение любых пяти последовательных чисел делится   а) на 30;   б) на 120.

Прислать комментарий     Решение

Задача 30366

Темы:   [ Признаки делимости на 11 ]
[ Ребусы ]
Сложность: 2+
Классы: 6,7,8

Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось  АБ×ВГ = ДДЕЕ.  Докажите, что он где-то ошибся.

Прислать комментарий     Решение

Задача 30371

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Докажите, что для любых натуральных чисел a и b верно равенство  НОД(a, b)НОК(a, b) = ab.

Прислать комментарий     Решение

Задача 30384

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9

Сумма трёх натуральных чисел, являющихся точными квадратами, делится на 9.
Докажите, что из них можно выбрать два, разность которых также делится на 9.

Прислать комментарий     Решение

Задача 30587

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8

Докажите, что  a ≡ b (mod m)  тогда и только тогда, когда  a – b  делится на m.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 5977]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .