ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найдите двугранные углы трёхгранного угла, плоские углы которого равны 90o , 90o и α .

Вниз   Решение


После ввода в строй третьего транспортного кольца на нем запланировали установить ровно 1998 светофоров. Каждую минуту они одновременно меняют цвет по следующему правилу: Каждый светофор меняет цвет в зависимости от цвета двух соседних (справа и слева), причем 1) если два соседних светофора горели одним цветом, то светофор между ними загорается этим же цветом. 2) если два соседних светофора горели разными цветами, то светофор между ними загорается третьим цветом. В начальный момент все светофоры кроме одного были зеленые, а один - красный. Оппоненты Лужкова заявили, что через какое-то время все светофоры будут гореть желтым цветом. Правы ли они?

ВверхВниз   Решение


Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 73]      



Задача 35544

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
Сложность: 2+
Классы: 7,8,9

Шоколадка имеет размер 4×10 плиток. За один ход разрешается разломать один из уже имеющихся кусочков на два вдоль прямолинейного разлома. За какое наименьшее число ходов можно разбить всю шоколадку на кусочки размером в одну плитку?

Прислать комментарий     Решение

Задача 35445

Тема:   [ Полуинварианты ]
Сложность: 2+
Классы: 7,8

В стране несколько городов, попарные расстояния между которыми различны. Путешественник отправился из города А в самый удаленный от него город Б, оттуда - в самый удаленный от него город С и т.д. Докажите, что если С не совпадает с А, то путешественник никогда не вернется в А.
Прислать комментарий     Решение


Задача 30433

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Игры-шутки ]
Сложность: 3-
Классы: 6,7,8

Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

Прислать комментарий     Решение

Задача 35493

Тема:   [ Полуинварианты ]
Сложность: 3
Классы: 8,9

В каждой из n стран правит либо партия правых, либо партия левых. Каждый год в одной из стран A может поменяться власть. Это может произойти в том случае, если в большинстве граничащих со страной A стран правит не та партия, которая правит в стране A. Докажите, что смены правительств не могут продолжаться бесконечно.

Прислать комментарий     Решение

Задача 109960

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8

В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 73]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .