Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

Вниз   Решение


Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

ВверхВниз   Решение


Найдите производящие функции последовательности многочленов Фибоначчи  F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
и последовательности многочленов Люка   L(x, z) = L0(x) + L1(x)z + L2(x)z² + ... + Ln(x)zn + ...
Определения многочленов Фибоначчи и Люка можно найти в справочнике.

ВверхВниз   Решение


Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
Здесь Tn – многочлен Чебышёва, смотри задачу 61099.

ВверхВниз   Решение


Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь). Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
  а)  Ln(x) = Fn–1(x) + Fn+1(x)  (n ≥ 1);
  б)  Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x)  (n ≥ 1);
  в)  F2n(x) = Ln(x)Fn(x)  (n ≥ 0);
  г)  (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x)  (n ≥ 0);
  д)  Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).

ВверхВниз   Решение


Найти все такие натуральные числа p, что p и  5p + 1  – простые.

ВверхВниз   Решение


Получите формулу для многочленов Фибоначчи и Люка, аналогичную формуле Бине (см. задачи 60578 и 60587).
Определения многочленов Фибоначчи и Люка смотри здесь.

ВверхВниз   Решение


Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

ВверхВниз   Решение


а) Сколькими способами 28 учеников могут выстроиться в очередь в столовую?
б) Как изменится это число, если Петю Иванова и Колю Васина нельзя ставить друг за другом?

ВверхВниз   Решение


а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 171]      



Задача 30347

Темы:   [ Сочетания и размещения ]
[ Турниры и турнирные таблицы ]
Сложность: 2
Классы: 6,7

Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

Прислать комментарий     Решение

Задача 30687

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 6,7

а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

Прислать комментарий     Решение

Задача 30689

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

Прислать комментарий     Решение

Задача 30693

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

Прислать комментарий     Решение

Задача 30694

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2
Классы: 7,8

Рота состоит из трёх офицеров, шести сержантов и 60 рядовых. Сколькими способами можно выделить из них отряд, состоящий из офицера, двух сержантов и 20 рядовых?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .