ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что на рёбрах связного графа можно так расставить стрелки, чтобы из некоторой вершины можно было добраться по стрелкам до любой другой.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 383]      



Задача 30822

Темы:   [ Ориентированные графы ]
[ Неопределено ]
Сложность: 3
Классы: 7,8

Докажите, что на рёбрах связного графа можно так расставить стрелки, чтобы из некоторой вершины можно было добраться по стрелкам до любой другой.

Прислать комментарий     Решение

Задача 31072

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

В некоторой стране из столицы выходит 89 дорог, из города Дальний – одна дорога, из остальных 1988 городов – по 20 дорог.
Доказать, что из столицы можно проехать в Дальний.

Прислать комментарий     Решение

Задача 31078

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 6,7,8

В графе 100 вершин, причём степень каждой из них не меньше 50. Доказать, что граф связен.

Прислать комментарий     Решение

Задача 31087

Темы:   [ Планарные графы. Формула Эйлера ]
[ Многогранники и многоугольники (прочее) ]
[ Шахматная раскраска ]
[ Делимость чисел. Общие свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7,8

Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.

Прислать комментарий     Решение

Задача 31363

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Доказать, что их можно разбить на пары, в каждой из которых имеется общий язык.
б) То же для группы из 100 человек.
в) То же для группы из 102 человек.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .