Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC и точка O. M1, M2, M3 — центры тяжести треугольников OAB, OBC, OCA соответственно. Доказать, что площадь треугольника M1M2M3 равна 1/9 площади ABC.

Вниз   Решение


Король решил уволить в отставку премьер-министра, но не хотел его обидеть. Когда премьер-министр пришёл к королю, тот сказал: "В этот портфель я положил два листа бумаги. На одном из них написано "`Останьтесь"', на другом  — "`Уходите"'. Листок, который вы сейчас не глядя вытянете из портфеля, решит вашу судьбу". Премьер-министр догадался, что на обоих листках написано "Уходите". Однако ему удалось сделать так, что король его оставил. Как поступил премьер-министр?

ВверхВниз   Решение


Докажите, что при  x ≥ 0  имеет место неравенство  

ВверхВниз   Решение


Покупатель взял у продавца товара на 10 р. и дал 25 р. У продавца не нашлось сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель ушёл, сосед обнаружил, что 25 р. фальшивые. Продавец вернул соседу 25 р. и задумался. Какой убыток понёс продавец?

ВверхВниз   Решение


На кафтане площадью 1 размещены 5 заплат, площадь каждой из которых не меньше 1/2. Докажите, что найдутся две заплаты, площадь общей части которых не меньше 1/5.

ВверхВниз   Решение


Дан треугольник со сторонами 2, 3, 4. Найдите радиус наименьшего круга, из которого можно вырезать этот треугольник.

ВверхВниз   Решение


В какой системе счисления справедливо равенство 3 · 4 = 10?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 5999]      



Задача 30359

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 2
Классы: 6,7,8

Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.

Прислать комментарий     Решение

Задача 30653

Тема:   [ Уравнения в целых числах ]
Сложность: 2
Классы: 6,7

Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево.
При каких m и n она сможет переместиться в соседнюю справа клетку?

Прислать комментарий     Решение

Задача 30832

Тема:   [ Системы счисления ]
Сложность: 2
Классы: 8

В какой системе счисления справедливо равенство 3 · 4 = 10?

Прислать комментарий     Решение

Задача 30862

Тема:   [ Неравенство Коши ]
Сложность: 2
Классы: 6,7

Докажите, что  ½ (x² + y²) ≥ xy  при любых x и y.

Прислать комментарий     Решение

Задача 30876

Тема:   [ Неравенство Коши ]
Сложность: 2
Классы: 6,7

Докажите, что при  a, b, c > 0  имеет место неравенство  

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 5999]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .