Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Жуков Г.

Найдите все n, при которых для любых двух многочленов P(x) и Q(x) степени n найдутся такие одночлены axk и bxl
(0 ≤ k ≤ n,  0 ≤ l ≤ n),  что графики многочленов  P(x) + axk  и  Q(x) + bxl  не будут иметь общих точек.

Вниз   Решение


Найдите наибольшее значение выражения  a + b + c + d – ab – bc – cd – da,  если каждое из чисел a, b, c и d принадлежит отрезку  [0, 1].

ВверхВниз   Решение


Сборная России по футболу выиграла у сборной Туниса со счетом  9 : 5.  Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.

ВверхВниз   Решение


Петин кот перед дождем всегда чихает. Сегодня он чихнул. ``Значит, будет дождь'' - думает Петя. Прав ли он?

ВверхВниз   Решение


Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.

ВверхВниз   Решение


Сын отца профессора разговаривает с отцом сына профессора, причем сам профессор в разговоре не участвует. Может ли такое быть?

ВверхВниз   Решение


Доказать, что любая ось симметрии 45-угольника проходит через его вершину.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 5999]      



Задача 30879

Тема:   [ Неравенство Коши ]
Сложность: 2
Классы: 6,7

Докажите, что при  x ≥ 0  имеет место неравенство  

Прислать комментарий     Решение

Задача 30911

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Объем параллелепипеда ]
Сложность: 2
Классы: 6,7

Поместится ли все население Земли, все здания и сооружения на ней в куб с длиной ребра 3 километра?

Прислать комментарий     Решение

Задача 30934

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Доказать, что любая ось симметрии 45-угольника проходит через его вершину.

Прислать комментарий     Решение

Задача 30937

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

Чётно или нечётно число  1 + 2 + 3 + ... + 1990?

Прислать комментарий     Решение

Задача 30941

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

У каждого марсианина три руки. Могут ли семь марсиан взяться за руки?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 5999]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .