ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сформулируйте и докажите признаки делимости на 2n и 5n. В треугольнике ABC даны углы B и C. Биссектриса
угла A пересекает сторону BC в точке D, а описанную окружность треугольника ABC – в точке E. Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6
частей?
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
Середина одной из диагоналей выпуклого четырёхугольника соединена с концами другой диагонали. Докажите, что полученная ломаная делит четырёхугольник на две равновеликие части.
Известно, что cos α° = 1/3. Является ли α рациональным числом? В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром. а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число). б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа. |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]
Докажите, что составное число n всегда имеет делитель, больший 1, но не больший
а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число). б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.
Найдите сумму всех правильных несократимых дробей со знаменателем n.
Найдите все такие простые числа p, что число p² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Докажите, что каждое натуральное число является разностью двух натуральных
чисел, имеющих одинаковое количество простых делителей.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке