ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег?

б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 418]      



Задача 32015

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 6,7,8

а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).

б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.

Прислать комментарий     Решение

Задача 32081

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9

Пусть a и b – целые числа. Докажите, что если  a² + 9ab + b²  делится на 11, то и  a² – b²  делится на 11.

Прислать комментарий     Решение

Задача 32818

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег?

б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)

Прислать комментарий     Решение

Задача 34988

Темы:   [ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Докажите, что ни при каком натуральном m число  1998m – 1  не делится на 1000m – 1.

Прислать комментарий     Решение

Задача 35125

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 7,8,9,10

У натурального числа A ровно 100 различных делителей (включая 1 и A). Найдите их произведение.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .