ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дан невыпуклый n-угольник с попарно непараллельными сторонами. Пусть A и B - две несоседние вершины n-угольника, разделяющие его контур на две ломаные AXY...B и BZT...A. Разрешается отразить одну из этих ломаных относительно середины отрезка AB. При этом получится новый многоугольник (а если не получится, то такая операция не разрешена). Докажите, что с помощью таких действий можно получить выпуклый многоугольник.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 488]      



Задача 79254

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Круг, сектор, сегмент и проч. ]
[ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Блох А.

На бумагу поставили кляксу. Для каждой точки кляксы определили наименьшее и наибольшее расстояние до границы кляксы. Среди всех наименьших расстояний выбрали наибольшее, а среди наибольших выбрали наименьшее и сравнили полученные два числа. Какую форму имеет клякса, если эти два числа равны между собой?
Прислать комментарий     Решение


Задача 34889

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Монотонность и ограниченность ]
[ Выпуклые и невыпуклые фигуры ]
[ Итерации ]
Сложность: 4
Классы: 9,10,11

На плоскости дан невыпуклый n-угольник с попарно непараллельными сторонами. Пусть A и B - две несоседние вершины n-угольника, разделяющие его контур на две ломаные AXY...B и BZT...A. Разрешается отразить одну из этих ломаных относительно середины отрезка AB. При этом получится новый многоугольник (а если не получится, то такая операция не разрешена). Докажите, что с помощью таких действий можно получить выпуклый многоугольник.
Прислать комментарий     Решение


Задача 35412

Темы:   [ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

25 дачников получили садовые участки. Каждый участок представляет собой квадрат 1×1, и все участки вместе составляют квадрат 5×5. Каждый дачник враждует не более, чем с тремя другими дачниками. Докажите, что можно распределить участки таким образом, чтобы участки враждующих дачников не были бы соседними (по стороне).

Прислать комментарий     Решение

Задача 35619

Темы:   [ Принцип крайнего ]
[ Ограниченность, монотонность ]
[ Перебор случаев ]
[ Подпоследовательности ]
Сложность: 4
Классы: 9,10,11

За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания).

Прислать комментарий     Решение

Задача 58050

Тема:   [ Наименьший или наибольший угол ]
Сложность: 4
Классы: 8,9

Шесть кругов расположены на плоскости так, что некоторая точка O лежит внутри каждого из них. Докажите, что один из этих кругов содержит центр некоторого другого.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .