ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Стороны AB, BC, CD, DA пространственного четырёхугольника ABCD касаются некоторой сферы в точках K, L, M, N соответственно. |
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 603]
На гипотенузе AB прямоугольного треугольника ABC выбрана точка K, для которой CK = BC. Отрезок CK пересекает биссектрису AL в её середине.
Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.
В равнобедренном треугольнике ABC на основании BC взята точка D, а на боковой стороне AB – точки E и M так, что AM = ME и отрезок DM параллелен стороне AC. Докажите, что AD + DE > AB + BE.
В прямоугольнике АВСD точка Р – середина стороны АВ, а точка Q – основание перпендикуляра, опушенного из вершины С на PD.
Стороны AB, BC, CD, DA пространственного четырёхугольника ABCD касаются некоторой сферы в точках K, L, M, N соответственно.
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 603] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|