ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 488]      



Задача 35110

Темы:   [ Плоскость, разрезанная прямыми ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3
Классы: 8,9,10

На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.
Прислать комментарий     Решение


Задача 35777

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Наибольший треугольник ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9,10

Докажите, что никакой выпуклый многоугольник нельзя разрезать на 100 различных правильных треугольников.

Прислать комментарий     Решение

Задача 60320

 [Золотая цепочка]
Темы:   [ Геометрическая прогрессия ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 9,10

   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Прислать комментарий     Решение

Задача 65991

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Какие числа могут быть записаны?

Прислать комментарий     Решение

Задача 66988

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 6,7,8

Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте.

а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).

б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .