Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре?

Вниз   Решение


В прямоугольном листе бумаги сделали несколько непересекающихся круглых дыр. На дырявом листке отметили две точки, находящиеся на расстоянии d друг от друга. Докажите, что на дырявом листке можно нарисовать кривую длины меньше 1,6d, соединяющую данные точки.

ВверхВниз   Решение


Сторона основания ABCD правильной призмы ABCDA1B1C1D1 равна 2a , боковое ребро – a . Рассматриваются отрезки с концами на диагонали AD1 грани AA1D1D и диагонали DB1 призмы, параллельные плоскости AA1B1B . а) Один из таких отрезков проведён через точку M диагонали AD1 , для которой AM:AD1 = 2:3 . Найдите его длину. б) Найдите наименьшую длину всех рассматриваемых отрезков.

ВверхВниз   Решение


Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других.

ВверхВниз   Решение


Правильную четырёхугольную пирамиду PQRST с вершиной P пересекает плоскость, проходящая через основание M высоты PM , перпендикулярная грани SPT и параллельная ребру ST . Высота PM в два раза больше ребра ST . Найдите отношение площади получившегося сечения к площади основания пирамиды.

ВверхВниз   Решение


Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

ВверхВниз   Решение


Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг радиусом $ {\frac{1}{4}}$, покрывающий всю ломаную.

ВверхВниз   Решение


В конусе расположены два одинаковых шара радиуса r , касающиеся основания конуса в точках, симметричных относительно центра основания. Каждый из шаров касается боковой поверхности конуса и другого шара. Найдите угол между образующей конуса и основанием, при которой объём конуса наименьший.

ВверхВниз   Решение


Трапеция KLMN с основаниями KN и LM вписана в окружность, центр которой лежит на основании KN. Диагональ KM трапеции равна 4, а боковая сторона KL равна 3. Найдите основание LM.

ВверхВниз   Решение


В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).

ВверхВниз   Решение


В треугольнике ABC с периметром 2p острый угол BAC равен $ \alpha$. Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD = a. Найдите площадь треугольника DOK.

ВверхВниз   Решение


В конусе расположены два шара единичного радиуса, центры которых находятся на оси симметрии конуса. Один из шаров касается боковой поверхности конуса, а другой – основания конуса и первого шара. Найдите угол между образующей конуса и основанием, при котором объём конуса наименьший.

ВверхВниз   Решение


Автор: Фольклор

В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?

ВверхВниз   Решение


В парламенте 200 депутатов. В процессе заседания произошло 200 потасовок, в каждой из которой участвовали некоторые два депутата.
Докажите, что можно объединить в комиссию 67 депутатов, из которых никакие два не выясняли между собой отношения в потасовке.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 82]      



Задача 31104

Темы:   [ Теория графов (прочее) ]
[ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Неравенство Коши ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 6,7,8

а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

Прислать комментарий     Решение

Задача 35108

Тема:   [ Теория графов (прочее) ]
Сложность: 4
Классы: 10,11

На плоскости отмечено 100 точек, никакие три из которых не лежат на одной прямой. Некоторые пары точек соединены отрезками. Известно, что никакая тройка отрезков не образует треугольника. Какое наибольшее число отрезков могло быть проведено?

Прислать комментарий     Решение

Задача 35163

Темы:   [ Теория графов (прочее) ]
[ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

В парламенте 200 депутатов. В процессе заседания произошло 200 потасовок, в каждой из которой участвовали некоторые два депутата.
Докажите, что можно объединить в комиссию 67 депутатов, из которых никакие два не выясняли между собой отношения в потасовке.

Прислать комментарий     Решение

Задача 60874

 [Число e и комбинаторика]
Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Число e ]
[ Раскраски ]
Сложность: 4
Классы: 9,10,11

Дано N точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из k цветов. Докажите, что если  N > [k!e],  то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.


Прислать комментарий     Решение

Задача 65731

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

а) Есть  2n + 1  батарейка  (n > 2).  Известно, что хороших среди них на одну больше, чем плохих, но какие именно батарейки хорошие, а какие плохие, неизвестно. В фонарик вставляются две батарейки, при этом он светит, только если обе они хорошие. За какое наименьшее число таких попыток можно гарантированно добиться, чтобы фонарик светил?

б) Та же задача, но батареек 2n  (n > 2),  причём хороших и плохих поровну.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .