ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске 100×100 расставлено 100 ладей, не бьющих друг друга.
Докажите, что в правом верхнем и в левом нижнем квадратах размером 50×50 расставлено равное число ладей.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 1006]      



Задача 32994

Темы:   [ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 8

Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.

Прислать комментарий     Решение

Задача 34864

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 2+

Дан шестизначный номер телефона. Из скольких семизначных номеров его можно получить вычеркиванием одной цифры?

Прислать комментарий     Решение

Задача 35167

Тема:   [ Комбинаторика (прочее) ]
Сложность: 2+
Классы: 8,9,10

На доске 100×100 расставлено 100 ладей, не бьющих друг друга.
Докажите, что в правом верхнем и в левом нижнем квадратах размером 50×50 расставлено равное число ладей.

Прислать комментарий     Решение

Задача 35501

Темы:   [ Ориентированные графы ]
[ Многоугольники (прочее) ]
Сложность: 2+
Классы: 7,8,9

На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что число вершин, в которые входят две стрелки, равно числу вершин, из которых выходят две стрелки.

Прислать комментарий     Решение

Задача 35578

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 2+
Классы: 8,9

Сколькими способами можно переставить числа от 1 до 100 так, чтобы соседние числа отличались не более, чем на 1?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .