ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 20 человек – 10 юношей и 10 девушек. Сколько существует способов составить компанию, в которой было бы одинаковое число юношей и девушек?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 501]      



Задача 35399

Темы:   [ Сочетания и размещения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9,10

Имеется 20 человек – 10 юношей и 10 девушек. Сколько существует способов составить компанию, в которой было бы одинаковое число юношей и девушек?

Прислать комментарий     Решение

Задача 60384

 [Ключи от сейфа]
Темы:   [ Сочетания и размещения ]
[ Криптография ]
Сложность: 3+
Классы: 8,9

Международная комиссия состоит из девяти человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее шести членов комиссии?

Прислать комментарий     Решение

Задача 73582

Темы:   [ Сочетания и размещения ]
[ Десятичная система счисления ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9,10

Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗.

Прислать комментарий     Решение

Задача 103880

Темы:   [ Классическая комбинаторика (прочее) ]
[ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Иванова Е.

В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью – 0,5 очка, за поражение – 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в случае выигрыша всех партий. Могли ли получить звание мастера спорта
  а) 7 участников;
  б) 8 участников?

Прислать комментарий     Решение

Задача 61513

Темы:   [ Раскладки и разбиения ]
[ Двоичная система счисления ]
[ Четность и нечетность ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4-
Классы: 8,9,10,11

Придумайте какое-либо взаимно-однозначное соответствие между разбиениями натурального числа на различные и на нечётные слагаемые.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .