ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На небе бесконечное число звёзд. Астроном приписал каждой звезде пару натуральных чисел, выражающую яркость и размер. При этом каждые две звезды отличаются хотя бы в одном параметре. Докажите, что найдутся две звезды, первая из которых не меньше второй как по яркости, так и по размеру.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 215]      



Задача 35417

Темы:   [ Принцип крайнего (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 3
Классы: 8,9,10

На небе бесконечное число звёзд. Астроном приписал каждой звезде пару натуральных чисел, выражающую яркость и размер. При этом каждые две звезды отличаются хотя бы в одном параметре. Докажите, что найдутся две звезды, первая из которых не меньше второй как по яркости, так и по размеру.

Прислать комментарий     Решение

Задача 60630

Темы:   [ Четность и нечетность ]
[ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 3
Классы: 7,8

На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций?

Прислать комментарий     Решение

Задача 66846

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые таблицы и их свойства ]
Сложность: 3
Классы: 8,9,10,11

Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?

Прислать комментарий     Решение

Задача 103803

Темы:   [ Математическая логика (прочее) ]
[ Числовые таблицы и их свойства ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 7

Три человека A, B, C пересчитали кучу шариков четырёх цветов (см. таблицу).

При этом каждый из них правильно различал какие-то два цвета, а два других мог путать: один путал красный и оранжевый, другой – оранжевый и жёлтый, а третий – жёлтый и зелёный. Результаты их подсчётов приведены в таблице. Сколько каких шариков было на самом деле?

Прислать комментарий     Решение

Задача 116025

Темы:   [ Шахматная раскраска ]
[ Числовые таблицы и их свойства ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

Автор: Прика С.

В пифагоровой таблице умножения выделили прямоугольную рамку толщиной в одну клетку, причём каждая сторона рамки состоит из нечётного числа клеток. Клетки рамки поочередно раскрасили в два цвета – чёрный и белый. Докажите, что сумма чисел в чёрных клетках равна сумме чисел в белых клетках.
Пифагорова таблица умножения – это клетчатая таблица, в которой на пересечении m-й строки и n-го столбца стоит число mn (для любых натуральных m и n).

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 215]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .