Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел?

Вниз   Решение


Первоначально на каждом поле доски 1×n стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за  n – 1  ход можно собрать все шашки на одной клетке.

ВверхВниз   Решение


Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.

ВверхВниз   Решение


Можно ли в таблице 6×6 расставить числа 0, 1 и –1 так, чтобы все суммы чисел по вертикалям, горизонталям и двум главным диагоналям были различны?

ВверхВниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что  ma2 + mb2 > 29r2.

ВверхВниз   Решение


Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.

ВверхВниз   Решение


В клетках таблицы 3×3 расставлены числа –1, 0, 1.
Докажите, что какие-то две из восьми сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.

ВверхВниз   Решение


Точка M лежит на стороне AC остроугольного треугольника ABC. Вокруг треугольников ABM и CBM описываются окружности. При каком положении точки M площадь общей части ограниченных ими кругов будет наименьшей?

ВверхВниз   Решение


В треугольнике ABC сторона AB равна 4, угол CAB равен 60o, а радиус описанной окружности равен 2,2. Докажите, что высота, опущенная из вершины C на AB, меньше $ {\frac{11\sqrt{3}}{5}}$.

ВверхВниз   Решение


В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных; словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на шесть непустых групп. Докажите, что из всех букв одной из групп можно составить слово.

ВверхВниз   Решение


Через точку пересечения двух окружностей проведите прямую, на которой окружности высекают хорды, сумма которых наибольшая. (Центры окружностей расположены по разные стороны от их общей хорды).

ВверхВниз   Решение


Занятия Вечерней Математической Школы проходят в девяти аудиториях. Среди прочих, на эти занятия приходят 19 учеников из одной и той же школы.
  а) Докажите, что как их не пересаживай, хотя бы в одной аудитории окажется не меньше трех таких школьников.
  б) Верно ли, что в какой-нибудь аудитории обязательно окажется ровно три таких школьника?

ВверхВниз   Решение


Сломанный калькулятор выполняет только одну операцию "звездочка":  ab = 1 – a : b.
Докажите, что с помощью этого калькулятора все же возможно выполнить любое из четырёх арифметических действий.

ВверхВниз   Решение


В компанию из N человек пришел журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?" Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти Z. (Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)

ВверхВниз   Решение


Все биссектрисы треугольника меньше 1. Докажите, что его площадь меньше 1.

ВверхВниз   Решение


На какую максимальную степень тройки делится число, десятичная запись которого состоит из 3n единиц?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 330]      



Задача 31369

Темы:   [ Индукция (прочее) ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 6,7,8

В прямоугольнике 3×n стоят фишки трёх цветов, по n штук каждого цвета.
Доказать, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.

Прислать комментарий     Решение

Задача 35490

Темы:   [ Индукция (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9,10

На какую максимальную степень тройки делится число, десятичная запись которого состоит из 3n единиц?

Прислать комментарий     Решение

Задача 60315

 [Ханойская башня I]
Темы:   [ Индукция (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Рекуррентные соотношения ]
Сложность: 3+
Классы: 8,9,10

  а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)?

  б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)?

  в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?

Прислать комментарий     Решение

Задача 65396

Тема:   [ Индукция (прочее) ]
Сложность: 3+
Классы: 10,11

Докажите, что любое натуральное число можно представить в виде  3u12v1 + 3u22v2 + ... + 3uk2vk,  где  u1 > u2 > ... > uk ≥ 0  и  0 ≤ v1 < v2 < ... < vk  – целые числа.

Прислать комментарий     Решение

Задача 66824

Тема:   [ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Любое число $x$, написанное на доске, разрешается заменить либо на  3$x$ + 1,  либо на  [x/2].
Докажите, что если вначале написано число 1, то такими операциями можно получить любое натуральное число.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .