ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими? Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими? Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC (∠B = 90°), касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке. Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?
Докажите, что если радиус вневписанной окружности равен полупериметру треугольника, то этот треугольник — прямоугольный.
На сторонах некоторого многоугольника расставлены стрелки. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 384]
На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.
а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей).
Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 384]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке